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Abstract. For a kind of n-dimensional field equation a,.a=q =dF(Q)/dQ, let (q,,p,) and 
(Q,, w,) for i = 1,2 be two sets of field variables. Consider a canonical transformation in 
the form p,=Jd"x9,(rp,m) and Q , = Q , ( ~ ,  9). It is shown that 9,(q, m) are constants of 
motion, Q,(q, 9) are the general soliton solutions for select q , ( x ) ,  and the direct condition 
of canonical transformation leads to the Bicklund transformation between two general 
soliton solutions. Some examDles of multidimensional solitons are discussed in detail. 

1. Introduction 

The multidimensional nonlinear scalar field equations come from some important 
physical phenomena. For example, the studies of superconductivity brought us the 
Josephson equation and the behaviour of particles led to the Klein-Gordon equation. 
Therefore solving these equations is interesting and useful work. In order to do this 
work, the researchers have advanced many methods such as inverse scattering [l-31, 
the Backlund transformation [4,5], the Riemann problem [6,7], the Hirota method 
[SI, the Gibbon method 19,101 and the projection matrix [ 11,121. In a previous paper 
[13], we presented the method of canonical transformation for solving these equations. 

Because the nonlinearity and the multidimension caused many difficulties for the 
researchers, so far only some specific solutions of the equations have been obtained 
[l-161. In general, these specific solutions cannot satisfy the conditions of actual 
boundary values and initial values. In the present paper, we obtain a kind of general 
soliton solution of the equations, by applying the canonical transformations. These 
soliton solutions will be quite useful for concrete physical problems. 

Throughout the paper we adopt a summation convention for repeated indices: a 
Greek index run from 0 to n - 1, the other index runs from 1 to n - 1 unless it is 
particularly stated otherwise. 

2. Canonical transformations of field variables 

Under the summation convention the multidimensional nonlinear scalar field equations 
are generally expressed as 

aaa,rp, =dF(~pi)ldrpi a, = a/ax, 
xo= it x * = x  x2=y x3=  2 , .  . . . (1) 
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For brevity we consider only two components of field variables, that is i = 1 and 2. 
Let the conjugate canonical momentum of field variables (oi be vi = arp,/at. The equation 
(1) has an equivalent form [17] 

where H denotes the Hamiltonian. In our previous work [13], we obtained another 
equivalent form of (l), namely the direct condition of canonical transformation 

where pi and e are a pair of new conjugate canonical variables of fields. The transforma- 
tion from (9, T) to ( q , p )  is a canonical transformation of fields. 

We take the canonical transformation in such a form 

that (1) and (3) become respectively 

a2rp, d F  -__ 
aqlaq2 d a i '  

Inserting (4) into (1) yields 

( 5 )  

Combining ( 5 )  with (6) we have the system of equations 

a,a.ql = o a&iJ&i = o  
aoq1a.q2 = f 

ama.q2 = o aaq2a.q2 = 0 

By substituting (4)  into (3), one obtains 

(7) 

(8) 
a r ,  aPi -=A a9, a 9  

a% a r ,  a% a'Fi 

a% a2gr agk a29, d F  
ar, ap,ar, aQj arjaVi dy, 

- 

Given (8) and (3, we may obtain the equation of the densities of momenta as 

j = l , 2  k # 1. (9) - 

The equations (7) and (9) determine the new canonical variables (q and p ) .  

0, anq1a.q2=f. Consider some general solutions of (7) as 
Equation (7) is two d'Alembert equations with the conditions a.qlaaql = apq2apq2 = 
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wheref;(qk) are some arbitrary functions of qh. Applying (10) to (7) leads to 

- 0  k, I =  1,2, .  . . , N i, j = 1,2. a’f; 
ankaql a,a,q, = akaala-- 

The arbitrariness of functions f r ( q k )  makes the constants akm, bi, obey the equations 

Equation (12) implies ; ( N + Z ) ( N + 3 )  equations with ( N + 2 ) n  constants a,, b, for 
LY =0, 1, . . . , n - 1;  k = 1 , .  . . , N, i = 1,2. Therefore the number N of variables qh must 
satisfy the inequality i (N+2)(N+3)-S(N+2)n,  that is 

NS7.n-3.  (13) 

Equation (9) contains two nonlinear equations. In general, to solve them is difficult 
work. However, we can easily obtain some of their simple specific solutions. For 
instance setting 9< with separate variables as [18] 

we insert (14a) and (150) into (9), respectively, obtaining the specific solutions 

and so on, where C, for i = 1, 2, 3, 4 are constants. 

the canonical transformation (4). From (146) we have 
Furthermore we take (146) as an example to find the solutions poi = p,(q,, q2) of 

We may prove g1 and 9’ are two constants of motion, since from (4) and (8) we have 

p=---+ . a g C  JP, aqk J% a r j  aqh 
’ JP, J q k  J t  J r j  dqr,  at 

aPia9, aPjaPk 
i, j ,  k = 1,2. 
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Setting the constants as 

(16) is simplified to 

~ i = J ~ i - b i F ( ~ p , )  m= Ja2- b 2 F ( d  

The application of (8), (14b) and (19) gives 

= C 2 ~ 2  dqi + C 4 r 2  dqz=Ja2-W(~p,)(Cz dqi + Gdq2). 

Setting C, = d,,, C, = d,,, C2= d,,, C,= d12, the solution ‘pi therefore becomes 

I Ja, -d:F(Qj) = dga + qoi qoj =constant. (20) 

Given (20) and (IO), we have a kind of general solution of equation (1) as follows; 

This result is quite interesting and useful. By choosing different F(Q) and J(uhx,), 
we can construct many multidimensional solitons with this result. 

3. Backluod transformations 

The Backlund transformation is an effective method for solving the sine-Gordon 
equation, the Korteweg-de Vries equation, and some other equations [19,20]. However 
using this method to directly solve the general scalar field equation (1) is still difficult. 
In this section we will discuss this probem with the canonical transformation. 

Assuming the solutions of (9) in the form 

then (8) gives the relations 

2(%, Q2) 
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between q, and p,, that is a general form of Backlund transformation. Heref,(rp,, r p 2 )  
and g2(qo , ,  q,) obey the nonlinqar equation (9). Substituting (22)  into (9) yields the 
systems of equations 

The solution of (24)  may be easily obtained as 

f,(p1)gt(lP,) = 2 F ( d +  c C =constant. 

For the latter purpose we select f,(pl) and gl(rpl) in the forms 

f , ( r p i ) = A i J * 2 F ( ~ , ) +  C g i ( q i ) = h ; ' J f 2 F ( r p i ) +  C A, =constant. 

Thus (22) and ( 8 )  give a solution of (1)  as 
(27) 

=I ~*2F(rp1)+C(A,dq1+A~'  dq,) 

namely 

d r p l l J * 2 F ( r p l ) + C = A l ~ l + ~ ; ' q 2 + ~ ~  qo = constant (28)  

which is contained by (20).  
Equation (25) is a system of nonlinear equations off,(plr q2) and g2(q l ,  (04. If we 

can obtain the solutions of (25), then we give the explicit form of the Backlund 
transformation (23); but to solve (25) is not a simple problem. Here we only consider 
a particular case, namely g, and f2 take the forms 

f 2  =f,(qP, + v2) g2 = gdrp1- v 2 ) .  

Given (29), the direct calculation leads to 

dgz a f z  -+-=O. ah ah 
arp2 ~ r p ,  arpz aq2 
---= 



974 W Hai 

Combining (31) with (32), we derive a specific solution of (25) which satisfies 

s 2 ( ~ 1 +  ~ 2 )  . g2((~1 -VZ) = ~ F ( P I ) - ~ F ( ~ .  (33) 

Equation (33) implies a few useful things. The following are several obvious examples. 

( a )  The Klein- Gordon equation. Setting F ( q j )  = f r p : ,  (1) becomes a KG equation. From 
(33) and the equation 

2F(qo,)-2F((D2)=(P:-(P:=((Oo,+rpz)((PI-q2) 

we may take it that 

f z ( ( ~ i  +PA = A a ( q i +  PI)  g d r ~ i  - 9 2 )  =A,'(IPI -PZ) A, = constant. (34) 

( b )  The LiouuiZIe equation. Since F ( q , )  =e7, and 

2F(q,) -2F(q2) = 2re% = 2 e(Q,+P~)/2[e(Y,-~*)/2-e-(4,-Q2)/2] 

=4e",+') 2 . slnh[t((ol - (od1 
so (33) gives 

fi = 2Ab e(%+%'/* gZ=2A;' sinh[$(q,- p2)] A b  = constant. 

( c )  The sinh-Gordon equation. In this case we have 

(35) 

g2 = 2AF' sinh[&( - q,)] fi=2Acsinh[t(rp,+92)1 A , =  constant (36) 

( d )  The sine-Gordon equation. The case implies 

2F(rp,)-2F(rpz)=2(cos q2-cos ~~)=4sin[f(49~+rp2)1 sin[4(rol-rp2)1 

g2=2&' sin[!(Pp, - d l  f2=2hd sin[f(rpl+codl A d  = constant. 

Inserting (34)-(37) respectively into (23), we obtain the corresponding Backlund 
transformations (BT). These BT will give some general soliton solutions of corresponding 
equations. In particular, by applying the theorem of commutability of BT, we can give 
some formulae of nonlinear superposition. For example, we have the well known 
formula [21] 

(37) 

A,,  A I  =constant (DI-PO A i + A z  'PI-VZ 
4 A , - A 2  4 

tan---tan - - 

where 'pi for i = 0, 1, 2, 3 are the solutions of so. 
For the SG equation, (28) contains the general soliton solution 

q1 = 4 tan-' exp(A ,ql + A;'q, + qo) qo = constant. (39) 



Canonical transformations and general soliton solutions 975 

Setting 'pa = 0, q2 = 4 tan-' exp( A2ql + A;'q, + qb), qt, = constant, and substituting them 
into (38), we obtain another general soliton solution of SG as 

h,+h, , e*14t+*;'q2+% -e491+"i192+9b 

(40) [ h l  - A, 1 + e ' A ~ + A ~ ) U , + ( A ~ ' + * i ' ) 4 t + 4 0 + n 6  1 'p3 = 4 tan-' 

where q1 and q2 are given by (10). Further we can obtain N general soliton solutions 
of the multidimensional SC, by repeatedly using the superposition formula (38). For 
the Klein-Gordon equation, the Liouville equation and the sinh-Gordon equation, 
we may manifestly find similar results, since we have given their Backlund transfor- 
mation. 

In general, the Backlund transformation depends on the solutions of (24) and (25) .  
For various nonlinear scalar field equations with different F(p) the solution to (25)  
will be an interesting exercise. 

4. Multidimensional solitons and breathers 

Let us now take (39) and (40) as examples to discuss some properties of the multi- 
dimensional solitons for the SG equation. First we simply show that the general soliton 
solutions (39) and (40) include some well known results. Let us look back at (10) and 
(12) .  According to (12) we may take all of a,, to be equal to zero and b , , = i / 2 ,  
b , ,  = 112, bZ0= - i / 2 ,  b2, = 112 and b,, = b,. = 0 for i >  1. Substituting them into (10) 
gives 

6,, S2= constant. (41) 

In this case, (39) and (40) become well known ( 1  + I )  dimensional solitons of SG. On 
the other hand, setting 

q1 =t (x+  t )  + 8, q, = g x  - t) + 8, 

) 
N 

I ; = ]  

8, =constant (42) 

( 
N 

q, =In e*k+b,,x, =In ebd=  e"*5x6+6ii 
k - 1  

N 
=In exp[(a*,+bj,)x,+8,] 

h = l  

in ( l o ) ,  then (39) and (40) denote some multiple solitons of multidimensional SG, that 
is the Gibbon's results [9, lo]. We will discuss some new interesting multidimensional 
solitons in detail. 

4.1. The (2+ I)-dimensional solitons 

When n = 4, (13) restricts the number N of variables qlk to N S 5 .  We only consider 
the simple case N = 1. In the case, (12)  contains six equations as 
a : o + a : , + ~ : 2 i ~ : 3 = 0  b:,,+ b:,+ b:,+ b:, = O  b:o+b&+b:2+b:3=0 

~ I O ~ I O + ~ I I ~ I I + ~ ~ Z ~ I ~ + ~ I ~ ~ I ~ = ~  aiob,o+aiibzi + ai?b2z+ anbz3=0 (43) 
biob~o+b,ib2i+bi2bzz+ b12b23=; 
with twelve constants. Therefore (43) implies the existance of six arbitrary constants. 
We select a group of simple solutions as follows; 

ala= i a , ,  = 1 al,= a,,=O 

b i z =  112 b13 = i / 2  b I o =  b l l  = O  (44) 
bzz= 112 b23 = - i / 2  bZ0 = bll = 0. 
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Applying (44) to (10) gives the field canonical variables 

q, =A(x - t )+y /2+ iz/2 q2=~(x- t )+y /2 - i z /2 .  (45) 

'p = 4  tan-' exp[f(x- f)+qA,(y+ iz)+fA;'(y-iz)] 

Given (45), from (39) we have a general soliton 

(46) 

where f ( x - t ) = A , f i ( x - f ) + A ; ' f 2 ( x - l ) + q o  is an arbitrary function of ( x - I ) ,  
Taking A ,  =A;' = 1, (46) becomes a (2+ 1)-dimensional general soliton solution 

'p=4tan-'exp[f(x-t)+yJ=4tan-'expc (47) 

where 

t = f ( x  - t) + y. (48) 
Although (47) is a simple form it can describe many interesting solitons. For any 
definite 6, one hand 'p has the corresponding definite value, on the other hand (48) 
denotes a general plane curve which moves along the x direction. The image of curve 
(48) determines the shape of soliton (47). There are many instances of (2+1) 
dimensional solitions such as: 

A. The parabola soliton 

qa=4tan- '  exp[(x-t)'+y]. 

B. The catenary soliton 

'pb = 4 tan-' exp[ch(x - f )  + y ] .  

C. The tractrix soliton 

qc = 4 tan-' exp[Arcch(x - f)- '+J1-(x-;j i+y].  

D. The Gaussian curve soliton 

'pd = 4 tan-' exp[e-Lx-')2/2 + Y l .  

E. The hypocycloid soliton 
213 312 qe = 4  tan-' exp((1- (x-  I )  ] + y}. 

F. The cycloid soliton 

'p,=4 tan-' exp[J(x- t)(2-x+ t )  -cos-'(l -x f  r ) + y ] .  

G. The strophoid soliton 

H. The conical section soliton 'ph = 4 tan-' exp[JA2 - B'(X - t)2+yl, A, B =constant 

Setting 'p = z, then any of these solitons is formed by (piling) an infinite number 
of corresponding curves on planes z = zj G (71/2) (i = 1,2,. . . , a). For example, the 
ph seem to be an U side down pipe which is piled by an infinite number of curves 

planes. Here fj, A and B are real constants; they determine the forms and places of 
the conical section, therefore the shapes of the soliton qh. 

'p, = 4 tan-' exp[(x - t)'v'(2-x+ r ) / ( l  + x  - t ) + y ] .  

and B'>O which makes 'p,, the ellipsoid soliton and B2<0 the hyperboloid. 

5, = +- A B (x- I )  + y  or (y-Cj)'+ B2(x- f ) 2 =  A* on r = z ,  G (71/2) ( i =  I, 2,. . . ,a) 
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4.2. The (3 + 1)-dimensional solitons 

We have known that the (2+ 1)-dimensional soliton (47) has some values the same on 
the corresponding general plane curves. Similarly, the (3 + 1)-dimensional solitons have 
the same values on some general curved surfaces. Let us see a simple example. Taking 
a group of solitions of (12) as 

a , , = i  a, ,  = 1 a , , = a j k = O  i, j >  1 

b12 = b,,  = 1/(2&) b14= i/2 bIo= b , ,  = b, ,  = 0 i > 4  (48) 

bU = b,, = 1/(2&) b2,=-i/2 b2,,= b2, = b,,=O i > 4  

and inserting these into (10) gives 

q1 = f,(x - I )  + ( y  + z)/(2JZ) + ix4/2 

q2 = f 2 ( x -  t )  + ( y +  z)/(2\/5) - ix,/2. 
(49) 

Application of (39) and (40) leads a solution 

rp=4tan-'exp[f(x-t)+(y+z)/JZ]=4tan-'exp< (50) 
when A ,  = 1, h ( x -  t ) + f 2 ( x -  1 )  = f ( x -  t )  and 

[ = f ( x  - t )  + ( y  + z ) / J z .  (51) 

For any deEnite and time t, (51) denotes a general cylindrical surface. On the surface, 
the soliton solution (50) takes the same value. The shape of the soliton depends on 
the image of the surface. Setting 

we have the Erst fundamental quantities [22] 

Jf E = l + p 2 = 1 + 2  F = p q = & -  ax 

the second ones 

and the corresponding fundamental forms 

0: = [ 1 + 2( $)*I dx2+ 2d2 - - a f  dx dy + 2 dy' 
Jx .; = - J 2 f / J x 2  d x ~  

J1+ (Jf/Jx)' 

Given (52), we can also obtain the principal radius of curvature 

G = l + q z = 2  (53) 
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Explicitly, if the function f takes the form 

f = J a 2 - ( x -  t)' a =arbitrary constant 

the curvature R is then equal to the constant 4 and the cylindrical surface (51) becomes 
a circular one. By substituting ( 5 8 )  into (50), we obtain a cylindrical surface soliton 
which moves along the x direction. 

In order to construct other (3+ 1)-dimensional solitons, let us rewrite (45) as 

4' = tm- t)+Yl/2+i[fi(X - t)+z1/2 

q2= [fib- O+y1/2- i[fi(x - t)+11/2. 
(59) 

Therefore we have 

I 
A j q 1 + A ~ ' q 2 = ~ ( A t +  AT')[ft(X - l)+y]+$A, -A:')[&(x - I )  + z]. (60) 

Setting A , + A ; ' = A 2 + A i ' = a , ,  Al-A;'=-(A2-A;')=aZ and inserting (60) into (40) 
yields 

(61) 

Taking qo=-7-42, qb=lri/2 and a2=-ia,, (61) becomes another kind of general 
soliton solution 

1 a, e n , ~ / , ~ x - r ~ + , l / 2 1 e i n d h ( x - r ~ + r l / 2 + ~ ~  - e- i=~~~:c . -~ ,+ . l12+q~ 
p = 4 tan-' 

II e~,l/,(x-rl+~l+9.+9;} a.{ 

By selecting different functions f,(x- t )  and &(.Y- t ) ,  (62) will give many interesting 
(3 + 1)-dimensional soliton solutions. 

4.3. The (3 + 1)-dimensional breathers 

Our discussion starts from equation (61). It is explicit that (61) contains the general 
breather solution 

when qo= qL= -wi/2. This solution has vibratility and some other properties. Let a2 
be an infinitesimal quantity a2+0. Then the definitions of a, and az imply a, -2 .  In 
this case, (63) leads to 

This is a new (3 + 1)-dimensional general soliton solution. Obviously setting 
f 2 ( x  - t )  = sin(x - I )  yields a fresh general breather solution. 

5. Stability of the multidimensional solitons 

We now come to simply discussing the stability [23] of the multidimensional solitons 
by making use of the energy of the fields. The energy of the n-dimensional scalar field 
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may be expressed as 

H =  d"-'x{[~,rpJ,~--aorpJop1/2+F(p)}. (650)  I 
For the stable field, J0p = 0 makes 

Combining ( 1 )  with (65b), we have the variation and second variation 

The principle of least energy [24] shows that 

d2F 
S2Ho>0 or ,>O 

drp 

leads the energy to minimum and, therefore the soliton to stabilization. 

requires that 
First we consider the SG equation with F (q )  = -cos 'p. Since dZF/d'p2 =cos p, (67) 

-7r /2s 'psl r /2 .  (68) 

Inserting (39) into (68) yields 

-tan 7r/8<exp(h,q,+h;'q2+ qo)ctan ? r / S .  (69) 

We then study the 'p' field equation. In the case, applying F(p)=$a'p2-$bp4 to 

Aysech(Jb7Zii'pp)=a4%+qo j = l , 2 .  (70) 

In this region, the soliton solution (39) is stable. 

(20) gives a general soliton solution 

This solution has the property 

O s J b T T i i ' p  = sech(ad,q, + qo) s 1 .  

Therefore we have pmU = J2a/b and 

(72) _- d 2 F  2 - a -3bq 2 a -3bp;., = ( 1  - 6 ) a  = -50. 
drp 

Equation (72) makes the condition of stabilization the following 

a<O. (73) 

Under the condition (73), the multidimensional solitons of p4 field is stable. This is 
an important result. 
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6. Conclusion 

We presented the general method of canonical transformation for solving scalar field 
equations. By making use of this method, we derived a general form of Backlund 
transformation and some general soliton and breather solutions of the equations. In 
particular, the Backlund transformation furnishes a way to construct N general soliton 
solutions of the SG equation. We showed that these general solutions include many 
interesting soliton specific solutions. Further we discussed the properties of the multi- 
dimensional solitons and obtained the conditions of stabilization for these solitons. 

We believe that the canonical transformation is also effective for solving other 
nonlinear field equations and the generai soliton solutions will have quite widespread 
applications in the actual physical problems. 
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