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Abstract. For a kind of n-dimensional field equation 3,8,¢ = dF(¢)/de, let (g, p;) and
{@,, m) for i=1,2 be two sets of field variables. Consider a canonical transformation in
the form p, =] d"x @,{p, w) and @, = ¢,(g, P). It is shown that P,(e, =) are constants of
motion, ¢,{g, P) are the general soliton solutions for select g,(x), and the direct condition
of canonical transformation leads to the Béicklund transformation between two general
soliton solutions. Some examples of muitidimensional solitons are discussed in detail.

1. Introduction

The multidimensional nonlinear scalar field equations come from some important
physical phenomena. For example, the studies of superconductivity brought us the
Josephson equation and the behaviour of particles led to the Klein-Gordon equation.
Therefore solving these equations is interesting and useful work. In order to do this
work, the researchers have advanced many methods such as inverse scattering [1-3],
the Bicklund transformation [4, 5], the Riemann problem [6, 7], the Hirota method
[8], the Gibbon method [9, 10] and the projection matrix [11, 12]. In a previous paper
[13], we presented the method of canonical transformation for solving these equations.

Because the nonlinearity and the multidimension caused many difficulties for the
researchers, so far only some specific solutions of the equations have been obtained
[1-16]. In general, these specific solutions cannot satisfy the conditions of actual
boundary values and initial valvues. In the present paper, we obtain a kind of general
soliton solution of the equations, by applying the canonical transformations. These
soliton solutions will be quite useful for concrete physical problems.

Throughout the paper we adopt a summation convention for repeated indices: a
Greek index run from 0 to n—1, the other index runs from 1 to n—1 unless it is
particularly stated otherwise.

2. Canonical transformations of field variables
Under the summation convention the multidimensional nonlinear scalar field equations
are generally expressed as

dadap. = dF(¢;)/de; 8. =8/0x,

Xo=it X=X Xy=3y X3=2Z....

(1)
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For brevity we consider only two components of field variables, that is i=1 and 2.
Let the conjugate canonical momentum of field variables ¢; be ; = d¢,/31. The equation
(1) has an equivalent form [17]

e @)
where H denotes the Hamiltonian. In our previous work [13], we obtained another
equivalent form of (1), namely the direct condition of canonical transformation

?_f." = .@J_ % = _@i (3)

where p; and g; are a pair of new conjugate canonical variables of fields. The transforma-
tion from (¢, w) to (g, p} is a canonical transformation of fields.
We take the canonical transformation in such a form

©i = @i{g1, 92) m = (4, ¢2)
n— (4)
pile(x), m(x)]1= .{d x P, )
that (1) and (3) become respectively
¢, dF
e _cr (5)
8g,9g, de,
Inserting (4) into (1) yields
2 2 2
o094 9o0a +6 N +6,, 84 e P +26¢,, « =—
@ = ‘11 24, ‘11 3% 8.1 3 q a2 ‘32 g §13.492 34,99, den
(6)
Combining (5) with (6} we have the system of equations
3.9,4,=0 o130 =0
: red 32418292 =% . )]
Babalfs= 0 8a920.42 = 0
By substituting (4) into (3), one obtains
d¢i_3%; am_ 39, (8)
aqj an; an a¢; '
Given (8) and (5), we may obtain the equation of the densities of momenta as
3P, P, &P 8P, dF
— L j=12 kot (9)

a7, dg,0m, O¢; dmdir _dcp,-

The equations (7) and (9) determine the new canonical variables (g and p).
Equation (7} is two d’Alembert equations with the conditions 3,4,0.4; = 854299, =
0, 3.9:9.9.=3. Consider some general solutions of (7) as
ql =ﬁ(ﬂ1) + blaxa e = Dol + ak
&, = constant k=1,2,...,N

(10)
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where f;(m,) are some arbitrary functions of 7,. Applying (10} to (7) leads to

af, 8f; i af; {0 (i=j)
aa iau i = Qg +a b‘a +a abia . +br'ab'a = . .
10 = el amcam 2 Pame o, ’ 3 (i#])
8, .
aaaaq¢'=akaah =0 ’ kyl=1329"'sN I,J=1,2- (11)

Ned M

The arbitrariness of functions f;(n,) makes the constants a,,, b, obey the equations

0 (i=7)
a,.a, =0 gy =0 b,qba={ o 12
Jpe ey teaUj ), % (Hfj), (12)

Equation (12) implies 3( N +2)}(N +3) equations with (N +2)r constants ay., b, for

a=0,1,...,n—1;k=1,..., N,i=1, 2. Therefore the number N of variables =, must
satisfy the inequality (N +2)(N +3) < (N + 2}, that is

N=2n-3. (13)

Equation (9) contains two nonlinear equations. In general, to solve them is difficult
work. However, we can easily obtain some of their simple specific solutions. For
instance setting P; with separate variables as [18]

P =fi(p)+ Fp) + g(m) + Gi(ma) (14a)
or

P = fi(p1)g(m) + F(92) G(mr2) (15a)
we insert (14a) and (154) into (9), respectively, obtaining the specific solutions

P, =%C117%+E['C27T§“ C.;IF(‘PI)“ CEIF(‘Pz)

R s ) (145)
P, =3Cm+3Cmz = CT Fo) = C3'Flgn)
g’] =sin mv ZCIF(¢|)+CDS TV ZCZF(‘P2) (15b)

P, =sin mv2CT Fe,) +cos m/2C7 Fe,)

and so on, where C, for i=1, 2, 3, 4 are constants.
Furthermore we take {14b) as an exampie to find the solutions ¢; =¢,{gq., g2) of
the canonical transformation {4). From (14b) we have

1/2
= {—2— [czy?z— C.?\ - (9—9) F(qol)]}

C,C,- C,C, G G
2 ¢ C b (e
N S _ =3
”z'{czcs—c,q[CB@‘ € (cz ca)F(“”)]} '

We may prove P, and &, are two constants of motion, since from (4) and (8) we have

8¢, g, ot dm g dt

NN AL
a(PJ: 611'1 f‘]ﬂ'j BQDJ at

r

ijk=1,2. (17)
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Setting the constants as

) 1/2 [ ) (C4 Cg)]llz
—_— (P, - C; P = e | 22 =bh
[C2C3_C1C4( 22 ¢ 1)] o C2C3—Clc4 C3 Cl :
2 1/2 2 C C3 1/2 (18)
1
—_— —_ = _— =b
[czcs-clc4(c39’ C'%)] % [czcs—C.c;(cz c)] :
(16) is simplified to
m=va, —bF(g) mr=va;— b Fe,). (19)
The application of (8), (14b) and (19) gives
3, 3P;
=—Ldg =—"'da,
dey 2 by dg,
=Cym dg,+ Cymdg=va,— b F{e)(C,dg,+ C3dq)
g 3P,
deg. =22 dg, = —
273, da 3, dg
= Comydg; + Comydga=va,— b, F(g)(Crdgy + Ci dgy).
Setting C, =dyy, Cy=dy3, Ca=dy, Cs=dy, the solution ¢; therefore becomes

———=d;q, * g0 L= 1.
a,— b.F(g;) dyq, + o go; = constan
Given (20) and (10), we have a kind of general solution of equation (1) as follows;

de; _
m—db[ﬁ(ﬂkﬁx‘,)-ﬁbﬁ,xﬁ], (1)

This result is quite interesting and useful. By choosing different F(o) and f{au.x.),
we can construct many multidimensional solitons with this result.

3. Backlund transformations

The Bicklund transformation is an effective method for solving the sine-Gordon

equation, the Korteweg-de Vries equation, and some other equations [19, 20]. However

using this method to directly solve the general scalar field equation (1) is still difficult.

In this section we will discuss this probem with the canonical transformation.
Assuming the solutions of (9) in the form

Py = mfiler) + mlfile) —fen, ¢2)]

(22}
Pr=mgiler) — malgi (1) — ga(e1, 2]
then (8) gives the relations
d d aP, oP
LB S flen @2)
agq, dq, 9wy I (23)

dw, d@, IP, P
T —2=—24 2=Ez(9’1, ®2)
8q: 8g; dm dm;
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between ¢, and @, that is a general form of Bicklund transformation. Here f2{¢y, ¢2)
and g.{e,, ©,) obey the nonlinear equation (9). Substituting (22) into (9) yields the
systems of equations

(1) dgl(ﬁpl) dF(‘Pl) df1(9°:)=dF(€°!)

( 24
.ﬂ @ d‘Pl g[ qpl) d¢] dqﬂl ( )
8 af. dF dF
gl(ﬁol)(“"__)fz £= (¢2) _ (¢1)
3¢z B d¢:  de de,
(25)
3 88, dF(g.) dF(e;)
~fisE= + :
Hle) (aqp a%) 2 f:zacp2 des de,
The solution of (24) may be easily obtained as
flegle ) =2F(e)})+C C = constant. (26)
For the latter purpose we select fi(¢,) and g (¢,) in the forms
file) =AVEZF(g}+C gile)=A7WE2F (@, )+ C A, = constant,
(27)

Thus (22) and (8} give a solution of (1} as

j‘drp1=J.a¢l j-—“dq. _[f1(ﬂ°1) dg:+ gi(¢1) dgo

= J VE2ZF{p) T C{A, dgy + A7 dga)

namely
Jd%/ViZFiGFJ"'C=A1‘I:+l\f]‘h+ do qo = constant (28)

which is contained by (20).

Equation (25) is a system of nonlinear equations of fx(¢;, ¢.) and g:(¢,, ¢a). If we
can obtain the solutions of (25), then we give the explicit form of the Bicklund
transformation (23); but to solve (25) is not a simple problem. Here we only consider
a particular case, namely g, and f; take the forms

fo=fe1+ @2} 82= g1 — @2)- (29}
Given (29), the direct calculation leads to

oh_dh_o s G0)

dp: 3¢y dp2 02

Applying (30) to (25) yields
a_f?,:dF(%)_dF(ﬁpz) £
dp, dgy de- ? 3¢,

dF(¢,)
de,

g2 _ _[dF(Qol)_’_dF(‘PZ)]
do, de,

2

(1)
= (@f) =2
¥
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and
of dF(e) dF(gs) P 98, _dF(g)  dF(g2)
26901* dp;  de, “0p, doy  de,
(32)
dF
( 2f2) 9 (‘Pl).

e

Combining (31} with (32), we derive a specific solution of (25) which satisfies
Jilor+ @) » 82{p — 92} =2F (@1) —2F(¢). (33)

Equation (33) implies a few useful things. The following are several obvious examples.

(a) The Klein- Gordon equation. Setting F{¢;) = 1¢3, (1) becomes a KG equation. From
(33} and the equation

2F(¢))~2F(p2) = pi— 03 =(p1+ ¢2)(01— 92)
we may take it that
Solor+¢2) = Laly + ) g1 = 92) = A3 (91— ¢2) A,=constant.  (34)
(b) The Liouville equation. Since F(p,)=¢® and
ZF(%) _ ZF(%) — 2(6"‘ _ e“‘=) =2 e(¢,+¢z]/2[e(¢1—¢,J/2 — e‘(‘P;“P;)/z]
=42 sinh[3(¢, - ¢2)]
50 (33) gives
fo=2A, elPrteat/? g:=2A;" sinh[3( ¢, — ¢2)] A = constant. (35)
(¢) The sinh-Gordon eguation. In this case we have
2F (@) —2F ;) =2(cosh ¢, — cosh ¢,) =4 sinh[3(; + ¢2)] sinblz(e; — ¢2)]
namely
g,=2A7 " sinh[3(e, — @2)] fo=2A,sinh{3(e, + @2)] A.= constant (36)
(d) The sine-Gordon equation. The case implies

2F(¢,) — 2F(5) =2(cos @, —c0s @) = 4 sin[3(¢: + ¢2)] sinfHe; — 1)) G7)

g:=2Ag" sin[3(e, — ¢2)] fo=2Agsin[He; + ¢2)] Aq4 = constant.

Inserting (34)-{37) respectively into (23), we obtain the corresponding Backlund
transformations (BT). These BT will give some general soliton solutions of corresponding
equations. In particular, by applying the theorem of commutability of BT, we can give
some formulae of nonlinear superposition. For example, we have the well known
formula [21]

—@o_MtA 01—

@3
tan = tan Ay, Ay =constant 38
4 A 4 e (38)

where ¢; for i=0, 1, 2, 3 are the solutions of sG.
For the sG equation, (28) contains the general soliton solution

=4tan” exp(A,q,+ Al g2+ qo) go = constant. (39)
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Setting ¢, =0, @, =4tan"' exp(A,q,+ A3 g2+ g6), 9= constant, and substituting them
into (38), we obtain another general soliton solution of sG as
4
_ At Ay eA,q,+A'l"q2+qu ._ellquﬂi"?z*'!&
3 =4tan A=Az ) 1+ e Ada FATFAT g, gk gy

(40)

where ¢, and g, are given by (10). Further we can obtain N general soliton solutions
of the multidimensional sG, by repeatedly using the superposition formula (38). For
the Klein—-Gordon equation, the Liouville equation and the sinh-Gordon equation,
we may manifestly find similar results, since we have given their Bicklund transfor-
mation.

In general, the Bicklund transformation depends on the solutions of (24) and (25).
For various nonlinear scalar field equations with different F{¢) the solution to (25)
will be an interesting exercise.

4. Multidimensional solitons and breathers

Let us now take (39} and (40) as examples to discuss some properties of the multi-
dimensional solitons for the sG equation. First we simply show that the general soliton
solutions (39) and (40) include some well known results. Let us lock back at (10) and
(12). According to (12) we may take all of a,, to be equal to zero and by;y=1i/2,
byy=1/2, byg=—i/2, b5, =1/2 and b,;, = b,, =0 for i> 1, Substituting them into (10)
gives

g =3x+1)+8, g =3(x—-1)+8, 8, 8, = constant. (41)
In this case, (39) and (40) become well known (1+1) dimensional solitons of sG. On
the other hand, setting

N N
g=InY¥ e"k+b,ax“=1n(ebm"= b3 e“kﬂ"ﬂ*ak)
kel k=1

N
=In ¥ expl{a..+ )%, + 8] &, = constant (42)
k=1

in (10), then (39) and (40) denote some multiple solitons of multidimensional sa, that
is the Gibbons results [9, 10]. We will discuss some new interesting multidimensional
solitons in detail.

4.1. The (2+ 1)-dimensional solitons

When n =4, (13) restricts the number N of variables n, to N =5. We only consider
the simple case N =1. In the case, (12} contains six equations as

alzo+a?|+ﬂ¥2+a%3=0 b%o+b?1+bf2+b?3=0 b§0+ b§1+b§2+b§3=0
arobiot @byt apbysta;sby; =0 Aiobzot a1y by + a1abaa t ay3hy; =0 (43)
brobyot byybyy+ byoban + biabag =%

with twelve constants. Therefore (43) implies the existance of six arbitrary constants.
We select a group of simple solutions as follows;

=1 ap=1 a;=a,;;=0
bl2=1/2 b13=i/2 bm=bn=0 (44)
b22=1/2 b23="—i/2 b20=b21=0'
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Applying (44) to (10) gives the field canonical variables

g =fHlx—)+y/2+iz/2 g =f{x—t)+p/2—iz/2. (45)
Given (45), from (39) we have a general soliton
e=4tan" exp[f(x — 1) +ir(y +iz) +IAT(y ~ i2)] {46)

where flx—t)=Afi(x=t)+ AT fas(x—1)}+g, is an arbitrary function of (x—1).
Taking A, =A7"' =1, (46) becomes a (2+ 1)-dimensional general soliton solution

o=4tan Texp[f(x—t)})+y]=4tan "exp ¢ (47)
where
£=fx=1)+. “8)

Although (47) is a simple form it can describe many interesting solitons. For any
definite £, one hand ¢ has the corresponding definite value, on the other hand {48)
denotes a general plane curve which moves along the x direction. The image of curve
(48) determines the shape of soliton (47). There are many instances of (2+1)
dimensional solitions such as:

A. The parabola soliton
@, =4tan”! exp[{x —1)*+ 1.
B. The catenary soliton
op =4 tan"! exp[ch{x —1) +y].
C. The tractrix soliton
@, =4tan™' exp[Arcch(x — )7} +V1=(x = 1)+ ).
D. The Gaussian curve soliton
@g =4tan" exple 21y,
E. The hypocycloid soliton
@. =4tan" exp{(1—(x— 1)*°/2+ y}.
F. The cycloid soliton
@r=4dtan™! exp[v(x - 1)(2—x+1)—cos (1 —x+t}+y].
G. The strophoid soliton

pg=dtan ' exp[{x - )2 -x+ /(1 +x—1}+y].

H. The conical section soliton ¢, =4 tan™’ exp[v A” — B*(x —t)*+y], A, B=constant
and B> 0 which makes ¢, the ellipsoid soliton and B* <0 the hyperboloid.

Setting ¢ = z, then any of these solitons is formed by (piling) an infinite number
of corresponding curves on planes z=z<{x/2) (i=1,2,...,x). For example, the
¢y seem to be an upside-down pipe which is piled by an infinite number of curves
t=vVAT-BXx—1 +yor (y &P+ B (x—-1)?=A’onz=z<(w/2) (i=1,2,...,%)
planes. Here £, A and B are real constants; they determine the forms and places of
the conical section, therefore the shapes of the soliton g,.
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4.2. The (3+ 1)-dimensional solifons

We have known that the (24 1)-dimensional soliton {47) has some values the same on
the corresponding general plane curves. Similarly, the (3 + 1)-dimensional solitons have
the same values on some general curved surfaces. Let us see a simple example. Taking
a group of solitions of (12) as

Q=1 a; =1 a4, =a,=0 Lj>1
bia= by =1/(2v2) bla=i/2 byo=b,,=b,,=0 i>4 (48)
by = by =1/(22) by, =—if2 byo= bz =b;, =0 i>4

and inserting these into (10) gives

g =H(x— 1+ (y+2)/ (V2 +ixs/2

(49)
qa=folx— 1)+ (y+2)/ (2V2) — ixa/ 2.
Application of (39) and {40) leads a solution
e=4tan""exp[fx—t)+(y+z)/vV2]=4tan " exp{ (50)
when A, =1, filx— )+ falx—1t)=f(x—1t) and
{=flx—t)+(y+2)/V2 (51)

For any definite £ and time ¢, {51) denotes a general cylindrical surface. On the surface,
the soliton solution (50) takes the same value. The shape of the soliton depends on
the image of the surface. Setting

9z af 9z 2, 2z [ (af)2:| 12
P ax Iax J ay ! (1+p°+q) ax (s2)
&’z af 8’z 8’z
T ax® Xy ay?
we have the first fundamental quantities [22]
2
d
E=1+p*= 1+2(af) F=pq=~/§a-f G=1+4"=2 (53)
the second ones ‘-
r 8*f/ax’ 5- f
Le—=m—2t M="=N=—=0 (54)
h V1+(af/ax)? h h
and the corresponding fundamental forms
[1+2(6f)] X222 fdxdy+2dy (55)
&*f/8x*
wl= —————dx’ (56)
V1+(af/ax)’
Given (52), we can also obtain the principal radius of curvature
h3 + 293/2
_U+G@f/ox) P 57

(+¢dy  8f/ax°
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Explicitly, if the function f takes the form
f=val—(x—1)? a = arbitrary constant {58)

the curvature R is then equal to the constant a, and the cylindrical surface (51) becomes
a circular one. By substituting (58) into (50), we obtain a cylindrical surface soliton
which moves along the x direction.

In order to construct other (3+ 1}-dimensional solitons, let us rewrite {45) as

g1 =[hlx =0+ )2+ i f{x ~ 1) +2]/2
g2 =[fi(x—+p}/2=ilfo{x~ ) +z]/2.

Therefore we have

(59)

A+ AT = A AT A =0+ T4 5= AT s =) +2) (60)

Setting A, + A7 =+ A3 =a;, A, — A7 = —(A;—A3') = a. and inserting (60) into (40)
vields

@ ea,[f,(x—r)+y112{eiazifz(x—t)+=]f’2+qo_e-iaztfztx—tlﬂlf!*qa}
© =4tan aq{ealifl(x_rﬁ'y]+qo+qé} . (6])

Taking g, = —mi/2, go=mi/2 and a,=—ia,, {61) becomes another kind of general

soliton solution

- i ch{as[folx— ) + 2]}
a; chia,[fi(x -t} +y1}

By selecting different functions fi{x— ¢} and f,(x— ¢}, (62} will give many interesting
(3+1)-dimensional soliton solutions.

¢ =4tan (62)

4.3. The (3+1)-dimensional breathers

Our discussion starts from equation (61). It is explicit that (61) contains the general
breather solution

-y a sin{aof ol x — 1) + 2]/2}
aysinh{a,[ fi(x—1)+y1/2}
when g, = g6=—i/2. This solution has vibratility and some other properties. Let a.

be an infinitesimal quantity a,—+0. Then the definitions of a, and a, imply ¢;=2. In
this case, (63) leads to

__arsinfas[ filx—1)+2]/2} flx—t+z
aysinh{a,[ fi(x - ) +y1/2} stnh fi(x 1) +y]

This is a new (3+1)-dimensional general soliton solution. Obviously setting
So{x — t)=sin(x — 1) yields a fresh general breather solution.

¢ =4dtan (63)

¢ =lim 4tan 4tan™ (64)
ay=

5. Stability of the multidimensional solitons

We now come to simply discussing the stability [23] of the multidimensional solitons
by making use of the energy of the fields. The energy of the n-dimensional scalar field
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may be expressed as

H= _[ d"7'x{[8,00.¢ —opdog]/2+ Fo)}. (65a)
For the stable field, d,¢ = 0 makes

H,= [ d" 'x[38.08.p + F(e)]= I d""'x #le, a.0]. (65b}

Combining (1) with (65b), we have the variation and second variation

ast adt dF
8H =J.d""x[——6,-——]3 =Jd"'1x(~——6;6, )3 ={
‘ e o))t dg T®)0¢ )
d°F 4 d*F
‘Ho=| d"! [—5 24 83, 2]=Id“" [ 5 8¢+ (8,80 (3, }
The principle of least energy [24] shows that
d2
8°Hy>0 or ——>0 (67)

de?

leads the energy to minimum and, therefore the soliton to stabilization.
First we consider the sG equation with F{¢)= —cos ¢. Since d*F/do*=cos ¢, (67)
requires that

—mjlse=sm/2 (68)
Inserting {39) into {(68) yields
—tan /8 <exp(A.g,+ Ay 'g;+ go) <tan w/8. (69)

In this region, the soliton solution (39) is stable.
We then study the ¢* field equation. In the case, applying F(¢)=31ap?—1be* to
(20) gives a general soliton solution

Ay sech(vVB/2a¢p) = adg+ g, j=1,2. (70)
This solution has the property

0=<+b/2a¢p =sech(adg+ go})< 1. (71)
Therefore we have ., =v2a/b and

d’F 5 4
a?-=a—3b¢> za-3bpi,,=(1~6)a=—3a {(72)
Equation (72) makes the condition of stabilization the following

a<0. ' (73)

Under the condition (73), the multidimensional solitons of ¢* field is stable. This is
an important result.
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6. Conclusion

We presented the general method of canonical transformation for solving scalar field
equations. By making use of this method, we derived a general form of Bicklund
transformation and some general soliton and breather solutions of the equations. In
particular, the Biacklund transformation furnishes a way to construct N general soliton
solutions of the sG equation. We showed that these general solutions include many
interesting soliton specific solutions. Further we discussed the properties of the multi-
dimensional solitons and obtained the conditions of stabilization for these solitons.

We believe that the canonical transformation is also effective for solving other
nonlinear field equations and the general soliton solutions will have quite widespread
applications in the actual physical problems.
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